
The Matrix: A Parallel System for Analyzing Friends in a
Social Network
Michael Matczynski

6.388 Final Report

May 18, 2006

Introduction
If we are to understand human socialization, we must first understand to what degree similar

interests determine friendship. This project aims to shed some light on this saying “opposites

attract” by analyzing friends on Facebook.com, a popular social networking site used by millions

of college students and faculty. We hope to discover if similarities in group associations can

systematically predict the likelihood of two people being friends.

Background
Social Networks are online websites that allow users to create profiles about themselves and link

to the profiles of their friends. Uses often list interests, hobbies, contact information, and

pictures about themselves. Additionally, user-created groups allow users with similar interests to

find and communicate with each other. For example, if a user on Facebook.com was interested

in Mathematics, he or she might join a “I Love Math” group find others with the same interest.

 Figure 1 shows an example screenshot from Facebook.com. The left side of the page

shows MIT friends and lets a visitor view all the people this user considers a friend in real life.

On right side is a listing of groups that this user has selected to be a part of. Group types are

user-defined and commonly include living groups such as “Simmons Hall,” entertainment and

movies such as “Casa Blanca,” and events such as “Boston Marathon 2005.”

Figure 1: An Example Facebook.com User Profile

Steps
Analyzing social network data to determine if similar interests imply common friendship

required a series of steps:

1. Gathering friend and group data from all MIT users on Facebook.com

2. Building a graph of users and determining their features

3. Developing algorithms to classify users based on the similarity between two people

4. Parallelizing three stages of computation

Gather Data
The first step of the project involved retrieving friend information from Facebook.com.

To protect the innocent and respect the privacy of individual users, no personal information was

collected. The only identifying information was a Facebook-defined user ID. Every college has

a different range of user IDs, and MIT has the range beginning with 700,000. User IDs starting

at 700,000 were collected until no more users were found. This resulted in 11,744 MIT user

profiles being collected.

Once the friend data was collected, common interest group membership was retrieved.

This involved retrieving group information for every user collected above. Groups have a wide

range of popularity, though at MIT all the groups had between 1 and 350 members in them.

Around 3,000 groups were collected in total.

Build Graph
The data collected represents an undirected graph with users as nodes and every friendship as a

link between nodes. Facebook allows users to change their privacy settings to keep their

friendship or group associations private. However, because a friendship link is undirected, even

if a specific user had their friend information private, this user would still be represented in the

graph because their friends may still have links to that user visible.

 Once the graph of friends was built, the system then created a FeatureVector for each

user node. A FeatureVector is simply a way to project a user into a multi-dimensional space

using features specific to a user. Two different sizes of features were used for comparison, small

features and intermediate features.

Small Features
Small features involved represented a user’s group membership as 0’s or 1’s in the

FeatureVector. This meant that a FeatureVector for MIT users is a 1x3000 vector.

Intermediate Features
Based on the idea of intermediate features used in image classification1, many of the groups

were first classified into around 80 intermediate features. This process was done by hand and

involved picking features that seemed to be general enough to encompass multiple groups, yet

small enough that it didn’t have too many groups. Unlike FeatureVectors built using small

features, FeatureVectors based on intermediate features may have values greater than 1 in them

as a user can be in multiple groups that share the same feature description.

 This table shows examples of intermediate features used for various Facebook groups.

Group Name Intermediate Features

Classical Musicians
John Williams Fans
College Democrats
College Republicans
Napoleon Dynamite
 is a Retarded Movie

+Classical Music
+Classical Music
+Politics, -Conservative
+Politics, +Conservative
+Movies, -Napoleon

Develop Algorithms
An algorithm was developed to determine the similarity between two users’ features. For

intermediate features, the multi-dimensional FeatureVector was normalized and then compared

to another FeatureVector using a distance metric. This resulted in values ranging from 0 for two

users with identical intermediate features to large numbers for users with radically different

features.

 For small features, a different metric was used that determined a value between 0

(similar) and 1 (different) for every pair of users. This metric involved finding the amount of

group membership overlap. Suppose users A and B have group sets X and Y respectively. The

metric used to gauge similarity was f(X, Y) = 1 - (X ∩ Y) / (X U Y).

1 Ullman, S. Visual features of intermediate complexity and their use in classification. 2002.
http://courses.csail.mit.edu/6.803/pdf/features.pdf

http://courses.csail.mit.edu/6.803/pdf/features.pdf

Parallelize Computation
Because of the O(n2) complexity used to compare every possible user-user pair at MIT, the

different stages of computation were parallelized. Because this was an open research project

requiring the algorithm to undergo much iteration, the goals of the system were to isolate faults

and provide modular stages of computation. These goals sped up development time and testing

as computation could be reused. Additionally, crashes occurring in one stage would not affect

previous computation.

 JavaMPI was used to parallelize the three stages of computation as described below. Due

to the large size of the dataset, the Java virtual machine’s heap size was increased to 1 GB using

the command line parameters “-Xms1024m -Xmx1024m” to prevent OutOfMemoryException.

Partitioning User-User Computation

Figure 2: Triangular Parallelization

The difference metric between two users does not depend on their order as f(a, b) = f(b, a).

Thus, to parallelize the task of inspecting all user-user pairs the following formula was used split

the computation regions into equally sized areas: c = sqrt((a2 + b2) / 2). Applied recursively,

this assigned each processor an equal amount of work. This technique was used only for stage 1,

which is described next.

Parallel System Architecture

Figure 3: Parallel System Architecture

Figure 3 shows the parallel system architecture used to analyze the social network data.

Stage 1 inputs friend connection and group membership data to analyze every user-user

pair. For each pair, a difference metric between 0 (similar) to 1 (different) is determined. Each

processor outputs its section of computation to a large file named [myrank].txt.

Every stage 2 processor reads every large file from stage 1 and inspects each user-user

pair. If either user is in the range of users the processor is monitoring, it keeps that pairing in

memory. Thus, the processor builds up multiple lists of metrics, one for every user in the range

of users the processor is monitoring. Once all data is read, each processor sorts the lists and

writes them to individual user files resulting in nearly 12,000 lists written to disk.

Stage 3 reads the user list files and calculates statistics such as the number of friends and

friend probability for different ranges of the difference metric.

Algorithm Results
Figure 4 and Figure 5 show the results of using intermediate and small features in friend

classification. The “Friend Ratio” in both figures shows the percentage that users are friends

given a user difference metric (plotted on the X axis). The metric of 0 represents a pair of people

who are exactly similar in feature/group associations whereas a metric of 1 represents a pair of

people with nothing in common. This ratio is calculated as the (# of friends) / (# of pairs of

people). Each figure also plots “Num friends” which shows the percent of the total number of

MIT users that fall under that user difference range.

 As used in this project, intermediate features derived from group associations do not

effectively predict friendships as varying the amount of user difference from 0 to 1 had

negligible impact on the friend ratio.

On the other hand, small features had remarkable predictive ability. This means that if

two users have a large number of common group associations, they are much more likely to be

friends. It should be noted that for small features, a large majority of user pairs fell between 0.8

and 1.0 in the difference metric. In this region the predictive power is much weaker, varying

from 16.2% to 4.7% and below.

Intermediate Features

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

User Difference

Friend Ratio
Num Friends

Figure 4: Results of Intermediate Features

Small Features

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

User Difference

Friend Ratio
Num Friends

Figure 5: Results of Small Features

Performance

Stage 1 Computation Time

0

200

400

600

800

1000

1200

1 2 4 8 16

Processors

Ti
m

e
(s

)

Time

Figure 6: Stage 1 Performance

Stage 1 involved inspecting every pair of users and calculating a difference metric based on their

FeatureVectors. Although one processor can perform better than two or four processors, eight

and above processors see performance gains. This initial increase in computation time using

multiple processors is suspected to be the result of a large amount of duplicated computation as

cached results in the software is not shared among processors. A distributed cache scheme may

have prevented the initial increase in computation time.

Stage 2 Performance

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 4 8 16

Processors

Ti
m

e
(s

)

Time

Figure 7: Stage 2 Performance

Stage 2 involved reading the friend pair metrics from stage 1 and creating a sorted list of every

user’s friends. This computation did not scale and the best performance was on a single

processor. The bottleneck in this case is suspected to be reading the results of stage 1 which

where 1.2 GB in size. This stage required all processors to read through the entire stage 1 result

and only keep the subset of friends in memory. Read contention may be to blame for the poor

performance.

Although the sixteen processor run was equivalent time-wise to the single processor run,

it required approximately only a sixteenth of the amount of RAM as the single processor run.

Thus, if the data set was too large to fit in memory on a single machine, parallelization may still

be useful.

Stage 3 Computation Time

0

50

100

150

200

250

1 2 4 8 16

Processors

Ti
m

e
(s

)

Time

Figure 8: Stage 3 Performance

Stage 3 involved reading the sorted lists for each user and finding statistical information such as

friend ratio and number of friends for varying ranges of the difference metric as displayed in

Figure 5 and Figure 3. Although the two processor test performed worse than the single

processor test, additional processors greatly increased performance.

Contributions
In this project I have:

• Developed an algorithm that provides evidence that people with similar interests are more

likely to be friends

• Showed that intermediate features may not be the best measure of similarity as small

features provided greater predictive power

• Parallelized multiple stages of computation with JavaMPI, increasing performance up to

three times

	The Matrix: A Parallel System for Analyzing Friends in a Social Network
	Introduction
	Background
	Steps
	Gather Data
	Build Graph
	Small Features
	Intermediate Features

	Develop Algorithms
	Parallelize Computation
	Partitioning User-User Computation
	Parallel System Architecture
	Algorithm Results
	Performance
	
	Contributions

