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Introduction 
If we are to understand human socialization, we must first understand to what degree similar 

interests determine friendship.  This project aims to shed some light on this saying “opposites 

attract” by analyzing friends on Facebook.com, a popular social networking site used by millions 

of college students and faculty.  We hope to discover if similarities in group associations can 

systematically predict the likelihood of two people being friends. 

Background  
Social Networks are online websites that allow users to create profiles about themselves and link 

to the profiles of their friends.  Uses often list interests, hobbies, contact information, and 

pictures about themselves.  Additionally, user-created groups allow users with similar interests to 

find and communicate with each other.  For example, if a user on Facebook.com was interested 

in Mathematics, he or she might join a “I Love Math” group find others with the same interest. 

 Figure 1 shows an example screenshot from Facebook.com.  The left side of the page 

shows MIT friends and lets a visitor view all the people this user considers a friend in real life.  

On right side is a listing of groups that this user has selected to be a part of.  Group types are 

user-defined and commonly include living groups such as “Simmons Hall,” entertainment and 

movies such as “Casa Blanca,” and events such as “Boston Marathon 2005.” 



 

Figure 1: An Example Facebook.com User Profile 

Steps 
Analyzing social network data to determine if similar interests imply common friendship 

required a series of steps: 

 
1. Gathering friend and group data from all MIT users on Facebook.com 

2. Building a graph of users and determining their features 

3. Developing algorithms to classify users based on the similarity between two people 

4. Parallelizing three stages of computation 



Gather Data 
The first step of the project involved retrieving friend information from Facebook.com.  

To protect the innocent and respect the privacy of individual users, no personal information was 

collected.  The only identifying information was a Facebook-defined user ID.  Every college has 

a different range of user IDs, and MIT has the range beginning with 700,000.  User IDs starting 

at 700,000 were collected until no more users were found.  This resulted in 11,744 MIT user 

profiles being collected. 

Once the friend data was collected, common interest group membership was retrieved.  

This involved retrieving group information for every user collected above.  Groups have a wide 

range of popularity, though at MIT all the groups had between 1 and 350 members in them.  

Around 3,000 groups were collected in total. 

Build Graph 
The data collected represents an undirected graph with users as nodes and every friendship as a 

link between nodes.  Facebook allows users to change their privacy settings to keep their 

friendship or group associations private.  However, because a friendship link is undirected, even 

if a specific user had their friend information private, this user would still be represented in the 

graph because their friends may still have links to that user visible. 

 Once the graph of friends was built, the system then created a FeatureVector for each 

user node.  A FeatureVector is simply a way to project a user into a multi-dimensional space 

using features specific to a user.  Two different sizes of features were used for comparison, small 

features and intermediate features. 

Small Features 
Small features involved represented a user’s group membership as 0’s or 1’s in the 

FeatureVector.  This meant that a FeatureVector for MIT users is a 1x3000 vector. 



Intermediate Features 
Based on the idea of intermediate features used in image classification1, many of the groups 

were first classified into around 80 intermediate features.  This process was done by hand and 

involved picking features that seemed to be general enough to encompass multiple groups, yet 

small enough that it didn’t have too many groups.  Unlike FeatureVectors built using small 

features, FeatureVectors based on intermediate features may have values greater than 1 in them 

as a user can be in multiple groups that share the same feature description.  

 This table shows examples of intermediate features used for various Facebook groups. 

Group Name  Intermediate Features 

Classical Musicians 
John Williams Fans 
College Democrats 
College Republicans 
Napoleon Dynamite 
 is a Retarded Movie 

 
 
 
 
 

+Classical Music 
+Classical Music 
+Politics, -Conservative 
+Politics, +Conservative 
+Movies, -Napoleon 

Develop Algorithms 
An algorithm was developed to determine the similarity between two users’ features.  For 

intermediate features, the multi-dimensional FeatureVector was normalized and then compared 

to another FeatureVector using a distance metric.  This resulted in values ranging from 0 for two 

users with identical intermediate features to large numbers for users with radically different 

features. 

 For small features, a different metric was used that determined a value between 0 

(similar) and 1 (different) for every pair of users.  This metric involved finding the amount of 

group membership overlap.  Suppose users A and B have group sets X and Y respectively.  The 

metric used to gauge similarity was f(X, Y) = 1 - (X ∩ Y) / (X U Y). 

                                                 
1 Ullman, S. Visual features of intermediate complexity and their use in classification. 2002.  
http://courses.csail.mit.edu/6.803/pdf/features.pdf

http://courses.csail.mit.edu/6.803/pdf/features.pdf


Parallelize Computation 
Because of the O(n2) complexity used to compare every possible user-user pair at MIT, the 

different stages of computation were parallelized.  Because this was an open research project 

requiring the algorithm to undergo much iteration, the goals of the system were to isolate faults 

and provide modular stages of computation.  These goals sped up development time and testing 

as computation could be reused.  Additionally, crashes occurring in one stage would not affect 

previous computation. 

 JavaMPI was used to parallelize the three stages of computation as described below.  Due 

to the large size of the dataset, the Java virtual machine’s heap size was increased to 1 GB using 

the command line parameters “-Xms1024m -Xmx1024m” to prevent OutOfMemoryException. 

Partitioning User-User Computation 

 
Figure 2: Triangular Parallelization 

The difference metric between two users does not depend on their order as f(a, b) = f(b, a).  

Thus, to parallelize the task of inspecting all user-user pairs the following formula was used split 

the computation regions into equally sized areas: c = sqrt((a2 + b2) / 2).  Applied recursively, 

this assigned each processor an equal amount of work.  This technique was used only for stage 1, 

which is described next.



Parallel System Architecture 

 
Figure 3: Parallel System Architecture 

 
Figure 3 shows the parallel system architecture used to analyze the social network data. 

Stage 1 inputs friend connection and group membership data to analyze every user-user 

pair.  For each pair, a difference metric between 0 (similar) to 1 (different) is determined.  Each 

processor outputs its section of computation to a large file named [myrank].txt. 

Every stage 2 processor reads every large file from stage 1 and inspects each user-user 

pair.  If either user is in the range of users the processor is monitoring, it keeps that pairing in 

memory.  Thus, the processor builds up multiple lists of metrics, one for every user in the range 

of users the processor is monitoring.  Once all data is read, each processor sorts the lists and 

writes them to individual user files resulting in nearly 12,000 lists written to disk. 

Stage 3 reads the user list files and calculates statistics such as the number of friends and 

friend probability for different ranges of the difference metric.



Algorithm Results 
Figure 4 and Figure 5 show the results of using intermediate and small features in friend 

classification.  The “Friend Ratio” in both figures shows the percentage that users are friends 

given a user difference metric (plotted on the X axis).  The metric of 0 represents a pair of people 

who are exactly similar in feature/group associations whereas a metric of 1 represents a pair of 

people with nothing in common. This ratio is calculated as the (# of friends) / (# of pairs of 

people).  Each figure also plots “Num friends” which shows the percent of the total number of 

MIT users that fall under that user difference range. 

 As used in this project, intermediate features derived from group associations do not 

effectively predict friendships as varying the amount of user difference from 0 to 1 had 

negligible impact on the friend ratio.   

On the other hand, small features had remarkable predictive ability.  This means that if 

two users have a large number of common group associations, they are much more likely to be 

friends.  It should be noted that for small features, a large majority of user pairs fell between 0.8 

and 1.0 in the difference metric.  In this region the predictive power is much weaker, varying 

from 16.2% to 4.7% and below. 



Intermediate Features
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Figure 4: Results of Intermediate Features 

 
 

Small Features
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Figure 5: Results of Small Features 



Performance 
 

Stage 1 Computation Time
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Figure 6: Stage 1 Performance 

 

Stage 1 involved inspecting every pair of users and calculating a difference metric based on their 

FeatureVectors.  Although one processor can perform better than two or four processors, eight 

and above processors see performance gains.  This initial increase in computation time using 

multiple processors is suspected to be the result of a large amount of duplicated computation as 

cached results in the software is not shared among processors.  A distributed cache scheme may 

have prevented the initial increase in computation time. 



Stage 2 Performance
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Figure 7: Stage 2 Performance 

 
Stage 2 involved reading the friend pair metrics from stage 1 and creating a sorted list of every 

user’s friends.  This computation did not scale and the best performance was on a single 

processor.  The bottleneck in this case is suspected to be reading the results of stage 1 which 

where 1.2 GB in size.  This stage required all processors to read through the entire stage 1 result 

and only keep the subset of friends in memory.  Read contention may be to blame for the poor 

performance. 

Although the sixteen processor run was equivalent time-wise to the single processor run, 

it required approximately only a sixteenth of the amount of RAM as the single processor run.  

Thus, if the data set was too large to fit in memory on a single machine, parallelization may still 

be useful. 



Stage 3 Computation Time
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Figure 8: Stage 3 Performance 

 
 

Stage 3 involved reading the sorted lists for each user and finding statistical information such as 

friend ratio and number of friends for varying ranges of the difference metric as displayed in 

Figure 5 and Figure 3.  Although the two processor test performed worse than the single 

processor test, additional processors greatly increased performance.  



Contributions 
In this project I have: 

• Developed an algorithm that provides evidence that people with similar interests are more 

likely to be friends 

• Showed that intermediate features may not be the best measure of similarity as small 

features provided greater predictive power 

• Parallelized multiple stages of computation with JavaMPI, increasing performance up to 

three times 
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